ESCAP/WMO Typhoon Committee Forty-eighty Session 22- 26 February 2016 Honolulu, Hawaii USA FOR PARTICIPANTS ONLY WRD/TC.48/7.2 17 February 2016 ENGLISH ONLY

REPORT ON AMENDMENTS TO THE TYPHOON COMMITTEE OPERATIONAL MANUAL

(submitted by the Rapporteur)

Summary and Purpose of Document:

This document presents draft amendments to the Typhoon Committee Operational Manual - Meteorological Component (TOM) proposed by the Members.

ACTION REQUIRED:

The Committee is invited to review and approve the proposed amendments to the TOM.

APPENDIXES:

DRAFT TEXT FOR INCLUSION AT SESSION REPORT
 UPDATE OF THE TYPHOON COMMITTEE OPERATIONAL MANUAL

APPENDIX A: DRAFT TEXT FOR INCLUSION IN THE SESSION REPORT

x.x Review of Typhoon Committee Operational Manual (TOM)

- 1. The Session noted that the Typhoon Committee Operational Manual (TOM) rapporteur requests WMO to publish and upload the 2015 edition of TOM on the Tropical Cyclone Programme (TCP) Website as submitted by the Rapporteur, with the amendments given in Appendix XX.
- 2. The Committee expressed its appreciation to the rapporteur for update of TOM.

APPENDIX B: UPDATE OF THE TYPHOON COMMITTEE OPERATIONAL MANUAL

1. The Typhoon Committee Operational Manual - Meteorological Component (TOM) has been reviewed and updated every year since its first issue in 1987. The 2015 edition was completed and posted on the WMO website in March 2015 in accordance with the approval of amendments to the 2014 edition by the 3rd Joint Session of the Panel on Tropical Cyclone (PTC) and Typhoon Committee (TC) (9 to 13 February 2015 Bangkok, Thailand).

2. At the 3rd session, the Committee decided that the rapporteur of the Japan Meteorological Agency (JMA) continue arrangements for updating the TOM. In this connection, on 21 August 2015, the rapporteur, Mr Tsukasa Fujita, Head of the JMA Tokyo Typhoon Center invited the focal points of the meteorological component of the Members to provide proposals for updates to the TOM.

3. As of the end of January 2016, proposals for updates to the TOM had been submitted by the five focal points of China, Hong Kong, China, Japan, Thailand and the Philippines.

4. Proposed amendments to the TOM are attached as Annex 1 and given below are the major points of the amendments:

- Update of information on technical specifications of the JMA's next generation satellite Himawari-8 (Chapter 2, 3 and 5)
- Update of information on telecommunication network (Chapter 5)
- Update of information on technical specifications of radars of typhoon committee members (Appendix 2-D)
- Update of operational typhoon track forecast methods used by typhoon committee members (Appendix 3-B)
- Update of information on HKO's operational procedures of TC satellite analysis and Non-Hydrostatic Model (Appendix 3-C, 3-E)

Draft Amendments to the Typhoon Committee Operational Manual – Meteorological Component (TOM) proposed by the Members

Page	Line	Proposed Amendment Comments	
Chapte	r 2.4		
<u>Chapte</u> 9	r 2.4 L50	JMA started the operation of its new geostationary meteorological satellite, Himawari-8, at 02:00 UTC on 7 July 2015, replacing the previous satellite MTSAT-2. The meteorological satellite information obtained by MTSAT Himawari-8 and related products are operated as follows: (i) full disk data are obtained hourly every 10 minutes with 16 observation bands; (ii) half disk data in the northern hemisphere are obtained hourly in addition to the full disk data; target area data are obtained every 2.5 minutes; (iii) additional half disk data in the northern and southern hemispheres for Atmospheric Motion Vector (AMV) extraction are obtained six hourly; (iv—iii) AMV data are derived hourly; (v—iv) Clear Sky Radiance (CSR) data are derived hourly from the	Update of the information on the geostationary meteorological satellite operated by JMA
10	L13	full disk data. JMA successfully launched Himawari-8 on 7 October 2014 and plans to start its operation in mid-2015 to replace the current satellite, MTSAT-2. The satellite will feature a new imager with 16 bands as opposed to the 5 bands of the MTSAT series. Full-disk imagery will be obtained every 10 minutes, and rapid scanning at 2.5-minute intervals will be conducted over several regions, one of which will be for targeted observation of tropical cyclones. Its horizontal resolution will also be	Update of the information on the geostationary meteorological satellite operated by JMA.

		double that of the MTSAT series.	
		Himawari 8 will not carry a dovice	
		for direct discomination system	
		Instead IMA will distribute all	
		imagory derived from the satellite	
		to National Mateorological and	
		to National Meteorological and	
		Hydrological Services (NMHSS) Via	
		An internet cioua service. The	
		Agency also plans to start a	
		HimawariCast Service Involving	
		the dissemination of primary sets	
		of images for operational	
		meteorological services via a	
		communication satellite. Its	
		current online imagery	
		distribution services (WIS Portal	
		(GISC-Tokyo) and the JMA Data	
		Dissemination System (JDDS)) will	
		be continued.	
		Further information on	
		Himawari-8 and -9 is available at	
		the website of Meteorological	
		Satellite Center of IMA	
		http://www.data.ima.go.in/mscw	
		eb/en/himawari89/).	
10	L44	SAREP reports are also issued	Update of the information on SAREP
		China to athen material	reports issued by Hong Kong, China.
		China to other meteorological	
		centres through the G15 under the	
		neading of IUCCUI VHHH, IUCCU2	
		VHHH, IUCLU3 VHHH and IUCLU4	
		VHHH in the BUFR code (FM 94)	
		when a tropical cyclone is located	
		within 10N to 30N and 105E to	
Chapte	r 2.6	125E.	
11	 L16	HKO conducts reconnaissance	Update of the information on the
**		flights for selected tronical	data of reconnaissance flight run by
		cyclones over the northern part of	HKO
		the South China Sea Regional d	inko.
		Data ovchange is being arranged	
		shared at a regional level.	
Chapte	r 3.1	Shared at a regional leven	
12	L35	Various analyses based on MTSAT	Update of the information on the
		Himawari data other than cloud	geostationary meteorological
		imagery itself should be produced	satellite operated by JMA.
		by the RSMC Tokyo - Typhoon	
		Center.	
13	Table 3.1	To be replaced by Annex 1-1	Update of the information on the
			products provided by JMA
15	Table 3.2	To be replaced by Annex 1-2	Update of the information on the
			NWP products provided by JMA

17	Table 3.3	To be replaced by Annex 1-3	Update of the information on the
			geostationary meteorological
			satellite operated by JMA.
Chapte	r 5.4		
23	Table 5.1	To be replaced by Annex 1-4	Update of the status of
			telecommunication network in
			China and the information on
			Himawari-8 is undated
ADDEN			minawari o is updated.
20	126	# radiocando unnor air	Modification of the description of
30	L20	# radiosonue upper-an	Modification of the description of
		observations are supplemented	upper-air observation run by Hong
		made by wind profiler	Kong, China
		observations at 06 and 18 UTC	
		normally, but radiosondes will be	
		launched when necessary	
		warranted by local wind	
		conditions	
APPE	NDIX 2-D		
40		To be replaced by Annex 1-5	Update of the distribution of radar
10			stations
43	n 3	To be replaced by Appey 1-6	Indate of the information on the
75	p.5	To be replaced by Alliex 1-0	radars in Hong Kong, China
50	10	To be were laced has Arres and 17	
52	p12	To be replaced by Annex 1-7	Update of the information on the
-53	-p13		radars in the Philippines
APPEN	DIX 2-E		
65		To be replaced by Annex 1-8	Update of the information on the
66	Figure	Delete	geostationary meteorological
	2-E.1		satellite operated by JMA.
	(1/5)		
67	Figure	Delete	
	2-E.1		
	(2/5)		
68	Figure	Delete	
00		Delete	
	2-E.1		
	(3/5)	N 1	
69	Figure	Delete	
	2-E.1		
	(4/5)		
70	Figure	Delete	
	2-E.1		
	(5/5)		
71	Figure	Delete	
	2-E.2		
APPEN	DIX 2-F		
72		To be replaced by Annex 1-9	Undate of the information on the
, 2		To be replaced by finnex 1 y	geostationary meteorological
			geostationally meteorological
ADDEN			satemite operated by JMA.
APPEN	120	Arria armana atui a atuu atuu a la a l	Undete of the information on th
/5	LZU	Axis-symmetric structure based on	update of the information on the
		Frank's (19/7) empirical formula	geostationary meteorological
		with parameters prescribed on	satellite operated by JMA.
		forecasters' analysis mainly	
		applying the Dvorak method to	
		MTSAT-Himawari imagery	

76	L45	(maximum number of predictions)	This explanation can lead to	
70	210	Three for each synoptic time	misunderstanding about the number	
		(0000, 0600, 1200 and 1800 UTC)	of typhoons that are subject to the	
		(0000,0000,1200 and 1000 010)	calculation of anomaly vectors. The	
			information is deleted.	
APPEN	DIX 3-B			
78	p1-p3	To be replaced by Annex 1-10	The information on operational	
			typhoon track forecast methods	
			used by China is updated.	
82	p5	To be replaced by Annex 1-11	The information on operational	
			typhoon track forecast methods	
			used by Hong Kong, China is	
			updated.	
APPEN	DIX 3-C			
ANN	L10	The tropical cyclone analysis and	The Guide has been updated	
EX1		forecasting technique using	recently with material on Dvorak	
		satellite data developed by Vernon	technique removed.	
		F. Dvorak (Dvorak, 1984) is mainly		
		used for TC warnings. The methods		
		are described in the Global Guide-		
		to Tropical Cyclone Forecasting at		
		the WMO/TCP website		
		(http://www.wmo.int/pages/prog		
		/www/tcp/TCF/GlobalGuide.html)		
		The heaven have a heaven and 1.12		
		To be replaced by Annex 1-12	The detailed description is added.	
LA4 ADDEN				
122	DIA 2-E	To be replaced by Appey 1-13	The detailed information on	
122		To be replaced by Almex 1-15	Non-Hydrostatic Model (NHM) run	
			hv HKO is undated	
APPFNDIX 4-C				
138		To be replaced by Annex 1-14	The information on stations	
		F F F F F F F F F F F F F F F F F F F	broadcasting cyclone warnings for	
			ship on the high seas in Thailand is	
			updated.	
APPEN	DIX 5-A			
139		To be replaced by Annex 1-15	Contact detail of China, the	
			Philippines and Thailand is updated.	
APPEN	DIX 5-C			
143		To be replaced by Annex 1-16	The table about collection and	
			distribution of information is	
			updated.	
APPEN	DIX 5-D	1	r	
148		ISBC01 VHHH	The information on SAREP report is	
		IUCC 10 01-04 VННН	updated.	
APPEN	DIX 6-B			
150	L38	Members can also retrieve the data	URL is changed	
		trom the Internet server of JMA		
		(ddb.kishou.go.jp http://www.wis-j		
		ma.go.jp/monitoring/data/monito		
		ring/) by using FTPHTTP. A		
		password to connect the FTP		
		server by using anonymous FTP is		

		issued to Members in consultation	
		with JMA.	
APPEN	DIX 7-A		
158		To be replaced by Annex 1-17	Update of the information on the geostationary meteorological
			satellite operated by JMA.

Area	Contents and Level	Forecast hours	Initial time	Availability
	500hPa(7,7)	Analysis	00, 12UTC	GIS
		24, 36	00, 12UTC	GTS, JMH
A' (Far East)	500hPa (T), 700hPa (D)	24, 36	00, 12UTC	GTS, JMH
	700hPa(w) 850hPa(T A)	Analysis	00, 12UTC	GTS
		24, 36	00, 12UTC	GTS, JMH
	Surface (P, R, A)	24, 36	00, 12UTC	GTS, JMH
	300hPa (Z, T, W, A)	Analysis	00UTC	GTS
	500hPa (Z, T, A)	Analysis	00, 12UTC	GTS, JMH
	500hPa (Ζ, ζ)	48, 72	00, 12UTC	GTS
C (East Asia)	700hPa (Z, T, D, A)	Analysis	00, 12UTC	GTS
C (East Asia)	700hPa (ω), 850hPa (Τ, Α)	48, 72	12UTC	GTS
	850hPa (Z, T, D, A)	Analysis	00, 12UTC	GTS, JMH
	Surface (P, R)	24, 48, 72	00, 12UTC	GTS, JMH
		96, 120	12UTC	JMH
0 (4 :)	500hPa (Ζ, ζ)	96, 120, 144,	401170	070
O (Asia)	850hPa (T), Surface (P)	168, 192		GIS
	200hPa (Z, T, W), Tropopause (Z)	Analysis	00, 12UTC	
Q (Asia Dasifia)	250hPa (Z, T, W)	Analysis, 24	00, 12UTC	GTS
(Asia Pacific)	500hPa (Z, T, W)	24	00, 12UTC	
D (N.H.)	500hPa (Z, T)	Analysis	12UTC	GTS
W	200hPa (streamline)	Analysis, 24,	00, 12UTC	OTO
(NW Pacific)	850hPa (streamline)	48	00, 12UTC	GIS
C"	Ocean Wave	10 04 40 70	00, 12UTC	
(NW Pacific)	(height, period and direction)	12, 24, 40, 72		G13, JIVI11
С	Sea Surface Temperature	Daily analysis	-	JMH
		Analysis	00,06,12,	
	Surface(P)	Analysis	18UTC	
C'2	Sunace(F)	24 00 12UTC G		GTS, JMH
		48	00, 12010	
(2310 500 100)		12,24,48,72	00.06.12	
	Surface(Typhoon Forecast)	24,48,72,96,		
		120	10010	

Table 3.1Chart-form products provided by
RSMC Tokyo - Typhoon Center for regional purposes

Notes:

(a) Area

A', C, O, Q, D, W,C" and C'2 are illustrated in Figure 3.1.

(b) Contents

Z: geopotential height	ζ: vorticity	T: temperature
D: dewpoint depression	ω: vertical velocity	W: wind speed by isotach
A: wind arrows	P: sea level pressure	R: rainfall

Table 3.2 NWP products (GSM and EPS) provided by RSMC Tokyo - Typhoon Center (Available at http://www.wis-jma.go.jp/cms/)

r	1	1	1
Model	GSM	GSM	GSM
Area and resolution	Whole globe, 1.25°×1.25°	20°S–60°N, 60°E–160°W 1.25°×1.25°	Whole globe, 2.5°×2.5°
Levels and elements	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 70 hPa: Z, U, V, T 100 hPa: Z, U, V, T 150 hPa: Z, U, V, T 200 hPa: Z, U, V, T, ψ , χ 250 hPa: Z, U, V, T, H, ω 400 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω S00 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 100 hPa: Z, U, V, T 100 hPa: Z, U, V, T 200 hPa: Z, U, V, T 200 hPa: Z, U, V, T, D 400 hPa: Z, U, V, T, D 400 hPa: Z, U, V, T, D 500 hPa: Z^{§}, U^{§}, V^{§}, T^{§}, D^{§}, \zeta 700 hPa: Z^{§}, U^{§}, V^{§}, T^{§}, D^{§}, \omega 850 hPa: Z^{§}, U^{§}, V^{§}, T^{§}, D^{§}, \omega 850 hPa: Z^{§}, U^{§}, V^{§}, T^{§}, D^{§}, \omega, \psi, \chi 925 hPa: Z, U, V, T, D, \omega 1000 hPa: Z, U, V, T, D Surface: P [¶] , U [¶] , V [¶] , T [¶] , D [¶] , R [¶]	10 hPa: Z*, U*, V*, T* 20 hPa: Z*, U*, V*, T* 30 hPa: Z°, U°, V°, T° 50 hPa: Z°, U°, V°, T° 70 hPa: Z°, U°, V°, T° 100 hPa: Z°, U°, V°, T° 150 hPa: Z*, U*, V*, T* 200 hPa: Z, U, V, T 250 hPa: Z°, U°, V°, T° 300 hPa: Z, U, V, T, D*‡ 400 hPa: Z, U, V, T, D*‡ 500 hPa: Z, U, V, T, D 850 hPa: Z, U*, V*, T*, D*‡ Surface: P, U, V, T, D‡, R†
Forecast hours	0–84 every 6 hours and 96–192 every 12 hours for 12UTC initial † Except analysis	0–84 (every 6 hours) [§] 96–192 (every 24 hours) for 12UTC initial [¶] 90–192 (every 6 hours) for 12UTC initial	0–72 every 24 hours and 96–192 every 24 hours for 12UTC ° 0–120 for 12UTC † Except analysis * Analysis only
Initial times	00, 06, 12, 18UTC	00, 06, 12, 18UTC	00UTC and 12UTC

Model	One-week EPS
Area and resolution	Whole globe, 2.5°×2.5°
Levels and elements	250 hPa: μU, σU, μV, σV 500 hPa: μZ, σZ 850 hPa: μU, σU, μV, σV, μT, σT 1000 hPa: μZ, σZ Surface: μP, σP
Forecast hours	0–192 every 12 hours
Initial times	00. 12UTC

Table 3.3 List of other products provided by RSMC Tokyo - Typhoon Center (Available at http://www.wis-jma.go.jp/cms/)

Data	Contents / frequency (initial time)
Data	
Satellite products	 High density atmospheric motion vectors (BUFR) (a) MTSAT-2 (VIS, IR, WV), 60S-60N, 90E-170W VIS: every hour (00-09, 21-23 UTC), IR and WV: every hour (b) Himawari-8 (VIS, IR, WV), 60S-60N, 90E-170W VIS: every hour (Northern Hemisphere: 00-09, 21-23 UTC; Southern Hemisphere: 00-08, 21-23 UTC), IR and WV: every hour (b c) METEOSAT-7 (VIS, IR, WV) VIS: every 1.5 hours between 0130 and 1500 UTC IR and WV: every 1.5 hours
	 Clear Sky Radiance (CSR) data (BUFR) (a) MTSAT-2 (IR, WV) radiances and brightness temperatures averaged over cloud-free pixels: every hour (b) Himawari-8 radiances and brightness temperatures averaged over cloud-free pixels: every hour
Tropical cyclone	Tropical cyclone related information (BUFR)
Information	tropical cyclone analysis data (00, 06, 12 and 18 UTC)
Wave data	Global Wave Model (GRIB2) • significant wave height • prevailing wave period • wave direction Forecast hours: 0–84 every 6 hours (00, 06 and 18UTC) 0–84 every 6 hours and 96-264 every 12 hours (12 UTC)
Observational data	 (a) Surface data (TAC/TDCF) SYNOP, SHIP, BUOY: Mostly 4 times a day (b) Upper-air data (TAC/TDCF) TEMP (parts A-D), PILOT (parts A-D): Mostly twice a day
Storm surge	 Storm surge model for Asian area storm surge distribution (map image) time series charts (at requested locations) The plotted values are storm surges, predicted water levels, astronomical tides, surface winds, and sea level pressures. Forecast hours: 0–72 every 3 hours (00, 06 12, and 18UTC) Only in the case of a tropical cyclone being in the forecast time (Available at https://tynwp-web.kishou.go.jp/)
SATAID service	 (a) Satellite imagery (SATAID) MTSAT Himawari-8 (b) Observation data (SATAID) SYNOP, SHIP, METAR, TEMP (A, B) and ASCAT sea-surface wind (c) NWP products (SATAID) GSM (Available at http://www.wis-jma.go.jp/cms/sataid/)

Table 5.1:Present operational status of the meteorological telecommunication networkfor the Typhoon Committee region

1.	<u>Main Telecommunication</u> <u>Network</u>	Present Operational Status
	Beijing - Tokyo	Cable (MPLS), TCP/IP Beijing <mark>8-16</mark> Mbps/Tokyo 10 Mbps
	Beijing - Offenbach	Cable (FR), 48 kbps (MPLS) TCP/IP Beijing <mark>8-16</mark> Mbps/Offenbach 50 Mbps
	Washington - Tokyo	Cable (MPLS), TCP/IP Washington <mark>1–50</mark> Mbps/Tokyo 10 Mbps
2.	<u>Main_regional circuit</u>	
	Tokyo - Bangkok	Cable (MPLS), TCP/IP Tokyo 2 Mbps/Bangkok 128 kbps
3.	Regional_circuits	
	Bangkok - Beijing	64 kbps leased line CMACast (Satellite broadcast)
	Bangkok - Hanoi	64 kbps leased line
	Bangkok – Hong Kong	Internet, FTP protocol
	Bangkok - Phnom Penh	Internet (VPN)
	Bangkok - Vientiane	Cable (DDN), 64 kbps, FTP protocol
	Beijing - Hanoi	64 kbps leased line, CMACast (Satellite broadcast)
	Beijing - Hong Kong	Cable (MSTP), 4 Mbps TCP/IP CMACast (Satellite broadcast)
	Beijing - Macao	2Mbps leased line CMACast (Satellite broadcast)
	Beijing - Pyongyang	64 kbps leased line,; CMACast (Satellite broadcast)
	Beijing - Seoul	Cable (FR), 32 kbps (CIR) TCP/IP
	Beijing - Vientiane	CMACast (Satellite broadcast)
	Hong Kong - Macao	ISDN, 128 kbps, TCP/IP
	Tokyo - Hong Kong	Cable (MPLS), TCP/IP Tokyo 2 Mbps/Hong Kong 1 Mbps

Tokyo - Seoul

Cable(MPLS), 128 kbps, TCP/IP Tokyo 10 Mbps/Seoul 4 Mbps

4. Inter-regional circuits

Bangkok - Kuala Lumpur	Cable (MPLS), TCP/IP 64 kbps
Bangkok - Singapore	Cable (MPLS), TCP/IP 64 kbps
Tokyo - Manila	Cable (MPLS), TCP/IP Tokyo 2 Mbps/Manila 64 kbps

5. <u>RTH radio broadcast</u>

Bangkok

1 FAX

1 FAX

6. <u>Satellite broadcast</u>

Tokyo

Operated by China: Asiasat-4 (122.2°E)

Operated by Japan: MTSAT HimawariCast (JCSAT-2, 14054°E) Operational data, fax and observations, warnings, NWP products, satellite image and fax distribution

Operational satellite image and data distribution

DISTRIBUTION OF THE RADAR STATIONS OF TYPHOON COMMITTEE MEMBERS

Annex 1-6 APPENDIX 2-D, p.3

Name of the Member Hong Kong, China

NAME OF STATION		Tai Mo Shan	Tate's Cairm		
SPECIFICATIONS	Unit				
Index number		45009	45010		
		22° 25′ N	22° 2 <mark>2</mark> 1′ N		
Location of station		114° 07′ E	114° 13′ E		
Antenna elevation	m	968	58 <mark>32</mark>		
Wave length	cm	10.6	10.3		
Peak power of transmitter	kW	650	500 650		
Pulse length	μs	1.0/1.8	0.8 1.0/2.0		
Sensitivity minimum of receiver	dBm	-117	-11 04		
Beam width (Width of over -3dB antenna gain of maximum)	deg	0.9(H) 0.9(V)	1.8 0.9		
Detection range	km	500	500		
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled		2	2		
DATA PROCESSING					
MTI processing 1.Yes, 2.No		2	2		
Doppler processing 1.Yes, 2.No		1	1		
Display 1.Digital, 2.Analog		1	1		
OPERATION MODE (When tropic cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others	al	3 (Continuous)	3 (Continuous)		
PRESENT STATUS 1.Operational 2.Not operational (for research etc.)		1	1		

Annex 1-7 Name of the Member Philippines - 1

NAME OF STATION		Aparri	Virac	Mactan	Guiuan	Subic
SPECIFICATIONS	Unit					
Index number		98231	98447	98646	98558	
Location of station		18° 22′ N 18° 31' 36.36" N 121° 37′ E	13° 38′ N 13° 37' 47.18" N 124° 19′ E	10° 18′ N 10° 19' 20.80" N 123° 58′ E	11° 02′ N 11° 02' 48.48" N 128° 44′ E	14° 49' 19.44" N
		121° 38' 08.58'' E	124° 20' 02.57'' E	123° 58' 48.47" E	125° 45' 19.55" E	49.68"E
Antenna elevation	m	16 39	248 39	33 26	66 39	40
Wave length	cm	5.65 10.52	10.5 <mark>2</mark>	10.5 5.33	10.5 <mark>2</mark>	10.4
Peak power of transmitter	kW	250 10	500 10	500 250	500 10	850
Pulse length	μs	2& 100 – intensity mode 1 @ 50 – Doppler mode	3 2 & 100 – intensity mode 1 @ 50 – Doppler mode	3 2.0, 1.0, 0.8, 0.4	3 2 & 100 – intensity mode 1 @ 50 – Doppler mode	2.0, 1.0, 0.8, 0.4
Sensitivity minimum of receiver	dBm	-114	-114	-114	-114	-114
Beam width (Width of over -3dB antenna gain of maximum)	deg	1. 5 8	2.2 1.8	2.2 1.0	2.2 1.8	1.83
Detection range	km	4 <mark>04</mark> 0	4 <mark>04</mark> 0	4 00 250	4 04 0	480
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled		Automatic- Azimuth scan- and mode 3- elv 2	Automatic- Azimuth sean- and mode 3- elv 2	Automatic- Azimuth sean- and mode 3- elv 2	Automatic- Azimuth sean- and mode 3- elv 2	2
DATA PROCESSING			<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
MTI processing 1.Yes, 2.No		21	21	2	21	2
Doppler processing 1.Yes, 2.No		2	2	2 1	2	1
Display 1.Digital, 2.Analog		1	1	1	1	1
OPERATION MODE (When tro	pical					
cyclone is within range of detection)		4 occasionally	4 occasionally	4	4 occasionally	
1.Hourly	1.Hourly		every 30 minutes	every 30	every 30 minutes	3
2.3-hourly		3 (constantly tracking)	3 (constantly tracking)	minutes 3	3 (constantly tracking)	
3.Others						
PRESENT STATUS						
1.Operational		1	1	1	1	1
2.Not operational (for research etc.)					

Name of the Member Philippines - 2

NAME OF STATION		Baler	Hinatuan	Tampakan	llo-llo	Tagaytay
SPECIFICATIONS	Unit					
Index number		98333	98755		98637	
Location of station		15° 44' 57.72" N 121° 37' 55.37" E	08° 22' 02.37" N 126° 20' 18.73" E	06° 25' 03.81" N 125° 01' 51.41" E	10° 46' 20.08" N 122° 34' 45.08" E	14° 09' 31.28" N 121° 01' 12.49" E
Antenna elevation	m	15	26	26	26	35
Wave length	cm	10.68	10.78	10.4	10.44	5.34
Peak power of transmitter	kW	600	850	850	850	250
Pulse length	μs	2.0, 1.0, 0.8, 0.4	2.0, 1.0, 0.8, 0.4	2.0, 1.0, 0.8, 0.4	3.0, 1.0, 0.8, 0.4	2.0, 1.0, 0.8, 0.4
Sensitivity minimum of receiver	dBm	-114	-114	-114	-114	-114
Beam width (Width of over -3dB antenna gain of maximum)	deg	1.83	1.3	1.3	1.3	1.0
Detection range	km	480	480	480	480	250
Scan mode in observation	Scan mode in observation					
			2	2	2	2
2.CAPPI						
1 Ves 2 No		2	2	2	2	2
1.Yes, 2.No		1	1	1	1	1
Display 1.Digital, 2.Analog		1	1	1	1	1
OPERATION MODE (When tropical						
cyclone is within range of detection)						
1.Hourly		3	3	3	3	3
2.3-hourly						
3.Others						
PRESENT STATUS				2 (for		
1.Operational		2 (for replacement)	1	replacement of	1	1
2.Not operational (for research etc.)				gears)		

Name of the Member Philippines - 3

NAME OF STATION		Basco	Quezon, Palawan	Baguio	Tanay	Daet	
SPECIFICATIONS	Unit						
Index number		98135		98321	98433	98440	
		20° 25' 14.87'' N	9° 13′ 50.01″ N	16° 20′ N	14° 34′ N	<mark>14° 08′ N</mark>	
Location of station		121° 57' 54.76'' E	118° 00' 20.09'' E	120° 34′ E	121° 21´ E	122° 59´ E	
Antenna elevation	m	15	26	2256	650.36	12.5	
Wave length	cm	5.33	5.35	10.5	10.5	10.5	
Peak power of transmitter	kW	250	250	500	500	500	
Pulse length	μs	2.0, 1.0, 0.8, 0.4	2.0, 1.0, 0.8, 0.4	4 / 0.5	3	3	
Sensitivity minimum of receiver	dBm	-114	-114				
Beam width (Width of over -3dB antenna gain of maximum)	deg	1.0	1.0	2.2	2.2	2.2	
Detection range	km	250	250	400	400	400	
Scan mode in observation	Scan mode in observation			Automatic-	Automatic-	Automatic	
		2	2 Azimuth sci and mode	Azimuth scan- and mode 3-	Azimuth scan and mode 3	Azimuth scan- and mode 3-	
3 Manually controlled	3 Manually controlled			elv	elv	elv	
1 Yes 2 No		2	2	2	2	2	
Doppler processing							
1.Yes, 2.No		1 1		2	2	2	
Display							
1.Digital, 2 Analog		1	1	4	4	4	
OPERATION MODE (When tropic	OPERATION MODE (When tropical						
cyclone is within range of detection)				4	4	4	
1.Hourly	1.Hourly		3	occasionally every 30-	occasionally every 30-	occasionally every 30-	
2.3-hourly				minutes	minutes	minutes	
3.Others							
PRESENT STATUS		1 (no communication					
1.Operational		link to central office but we	1	4	4	4	
2.Not operational (for research etc.)		get data via FTP)					

Annex 1-8

SCHEDULE OF **MTSATHIMAWARI** OBSERVATIONS AND DISSEMINATIONS

1. IMAGER oObservations

IMAGER Himawari observations are as follows:

- (a) full-disk observations are made hourly-every 10 minutes;
- (b) half-disk-target area observations of northern hemisphere are made hourly every 2.5 minutes in addition to the full-disk observations;
- (c) additional half disk data in the northern and southern hemispheres for Atmospheric Motion Vector (AMV) extraction are made six hourly.

2. HimawariCloud (Internet cloud service)

JMA distributes full-spec imagery derived from the Himawari-series satellites via an Internet cloud service, HimawariCloud. See the following webpage for details. http://www.data.jma.go.jp/mscweb/en/himawari89/cloud_service/cloud_service.html

3. HimawariCast (communication satellite dissemination service)

JMA operates the HimawariCast service which disseminates primary sets of imagery from the Himawari-series satellites via an communication satellite, See the following webpage for details.

http://www.data.jma.go.jp/mscweb/en/himawari89/himawari_cast/himawari_cast.html

2. Dissemination Services for Medium-scale Data Utilization Station (MDUS) Users

High Rate Information Transmission (HRIT) is available as dissemination service for MDUS users.

Technical specifications of HRIT are given in

JMA HRIT Mission Specification Implementation (Issue 1.2, 1 Jan. 2003)

(http://www.jma.go.jp/jma/jma-eng/satellite/introduction/4_2HRIT.pdf)

This service will terminate in around the end of November 2015.

3. Dissemination Services for Small-scale Data Utilization Stations (SDUS) Users

Low Rate Information Transmission (LRIT) is available as dissemination service for SDUS users. Visible imagery of full earth's disk of normalized geostationary projection has been disseminated via LRIT since 1 July, 2010. Technical specification of LRIT is given in JMA LRIT Mission Specification Implementation (Issue 7, 1 Jul. 2010). (http://www.jma.go.jp/jma/jma_eng/satellite/introduction/4_3LRIT.pdf)

This service will terminate in around the end of November 2015.

4. Internet Service for National Meteorological and Hydrological Services (NMHSs)

Besides the direct broadcasting above services, JMA provides satellite imagery through the Internet FTP for NMHSs. Detailed information of this service is shown in the following webpage:

http://www.jma.go.jp/jma/jma_eng/satellite/nmhs.html-various methods.

[JMA real-time satellite imagery webpage] http://www.jma.go.jp/en/gms/

[MSC real-time satellite imagery webpage] http://ds.data.jma.go.jp/mscweb/data/sat_dat/ http://www.data.jma.go.jp/mscweb/data/himawari/

[SATAID (Satellite Animation and Interactive Diagnosis) Service] http://www.wis-jma.go.jp/cms/sataid/ http://www.wis-jma.go.jp/cms/sataid/

[JDDS (JMA Data Dissemination Service)] http://www.data.jma.go.jp/mscweb/en/himawari89/JDDS_service/JDDS_service.html

SATELLITE IMAGERY RECEIVING FACILITIES AT TYPHOON COMMITTEE MEMBERS

Member	St	MTSAT Himawari 1. M-DUS Himawari Cloud 2. S-DUS Himawari Cast	NOAA 1. HRPT 2. APT	Meteosat 1. P-DUS	
Cambodia			1, 2		
China	Beijing Shanghai Shenyan Guangzhou Cheng-chou Cheng-tu Lan-chou Kunming Changsha Nanjing Harbin	(39.9°N, 116.4°E) (31.1°N, 121.4°E) (41.8°N, 123.6°E) (23.1°N, 113.3°E) (34.7°N, 113.7°E) (31.2°N, 114.0°E) (36.1°N, 103.9°E) (25.0°N, 102.7°E) (28.2°N, 113.1°E) (32.0°N, 118.8°E) (45.8°N, 126.8°E)	$1, \frac{2}{1, 2} \\ 1, \frac{2}{1} \\ \frac{1}{2}$	1, 2 2	
Democratic People's Republic of Korea	Pyongyang	(39.0°N, 125.8°E)	1,2	1	
Hong Kong, China*	Kowloon	(22.3°N, 114.2°E)	1, 2 Receiving Himawari- 8 (replacem ent of MTSAT) via Internet download and HimawariC ast	1	
Japan	Minamitorishima Osaka	(24.3°N, 154.0°E) (34.7°N, 135.5°E)	2 1, 2		

*Hong Kong, China receives AQUA (MODIS), NPP(Crls, VIIRS, ATMS), FY-2 (S-VISSR), and TERRA (MODIS).

Member	Sta	MTSAT Himawari 1. M-DUS Himawari Cloud 2. S-DUS Himawari Cast 3. Movie	NOAA 1. HRPT 2. APT	Meteosat 1. P-DUS	
Lao People's Democratic Republic			2		
Macao, China*	Масао	(22.2°N, 113.5°E)	1	1	
Malaysia	Petaling Jaya	(3.1°N, 101.7°E)	1, 2	1	
Philippines	Quezon City Cagayan de Oro City Pasay City Cebu	(14.7°N, 121.0°E) (8.5°N, 124.6°E) (14.5°N, 121.0°E) (10.3°N, 124.0°E)	1, 2 2 2 2	1	
Republic of Korea*	Seoul Incheon Int. Airport Munsan Seosan Pusan Pusan Kimhae Air Kwangju Taejon Kangnung Cheju Taegu Taegu/Air Traffic Chonju Chongju Ullung-Do Mokpo Chunchon Masan Tongyong Inchon Huksando Suwon Sokcho Pohang Kunsan Baengnyeong-do	$(37.6^{\circ}N, 127.0^{\circ}E)$ $(37.3^{\circ}N, 126.3^{\circ}E)$ $(37.9^{\circ}N, 126.8^{\circ}E)$ $(36.8^{\circ}N, 126.5^{\circ}E)$ $(35.1^{\circ}N, 129.0^{\circ}E)$ $(35.2^{\circ}N, 126.9^{\circ}E)$ $(35.2^{\circ}N, 126.9^{\circ}E)$ $(35.2^{\circ}N, 126.9^{\circ}E)$ $(35.9^{\circ}N, 127.4^{\circ}E)$ $(35.9^{\circ}N, 128.6^{\circ}E)$ $(35.9^{\circ}N, 128.6^{\circ}E)$ $(35.9^{\circ}N, 128.6^{\circ}E)$ $(35.8^{\circ}N, 127.2^{\circ}E)$ $(36.6^{\circ}N, 127.4^{\circ}E)$ $(37.5^{\circ}N, 130.9^{\circ}E)$ $(34.8^{\circ}N, 126.4^{\circ}E)$ $(37.5^{\circ}N, 128.6^{\circ}E)$ $(34.9^{\circ}N, 128.4^{\circ}E)$ $(37.5^{\circ}N, 126.6^{\circ}E)$ $(34.7^{\circ}N, 125.5^{\circ}E)$ $(37.3^{\circ}N, 127.0^{\circ}E)$ $(36.0^{\circ}N, 129.4^{\circ}E)$ $(36.0^{\circ}N, 129.4^{\circ}E)$ $(36.0^{\circ}N, 126.7^{\circ}E)$ $(37.9^{\circ}N, 124.6^{\circ}E)$	1, 2 $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ $2, 3$ 3 3 3 3 3 3 3 3 3	1	1
Singapore*	Changi Airport	(1.4°N, 104.0°E)	1	1	1
Thailand	Bangkok	(13.7°N, 100.6°E)	1, 2	1	

USA	Guam	(13.4°N, 144.6°E)	1 , 2	1	
Viet Nam	Hanoi Ho Chi Ming City	(21.0°N, 105.5°E) (10.5°N, 106.4°E)	1, 2	2 2	

* Macao, China receives FY-2D, FY-2E (S-VISSR) Stretched VISSR. * Republic of Korea receives AQUA (MODIS, AIRS, AMSU, AMSR-E), FY-1 (CHRPT) and TERRA (MODIS). * Singapore receives AQUA (MODIS), FY2B (S-VISSR), FY-1 (CHRPT) and TERRA (MODIS).

OPERATIONAL TYPHOON TRACK FORECAST METHODS USED BY TYPHOON COMMITTEE MEMBERS

Item	Method	Type of output
Name of the method	Global Numerical Model of Typhoon Track Prediction (GMTTP - <mark>T639</mark>)	4 times/day (00,06,12,18UTC)
		Track position up to 120h, interval is 6h
Description of the method	 a) Forecast domain of GMTTP: Global b) Vertical resolution: 60L c) Horizontal resolution: F639-(0.28125° *0.28125°) d) Time integration: Semi-Lagrangian e) Physical processes: Short wave radiation: morcrette,1991 Fouquart and Bonnel, 1980 Long wave radiation: Fouquart and Bonnel,1988 Morcrette, 1990 Turbulence diffusion: Louis et al.,1982-1979 cumulus convection: mass flux scheme(tiedtke,1989) cloud physics: prognostic cloud scheme (Tiedtke;1993) Surface physical processes: 4 level model (Viterbo and Beljaars, 1995) Viterbo and Beljaar, 1995 f) Vortex initialization process Relocation and intensity modification 	

Item	Method	Type of output
Name of the method	Global Ensemble Numerical Model of Typhoon Track Prediction (GTC-EPS-T639)	2 times/day (00,12UTC)
Description of the method	 a) Forecast domain of GTC-EPS-T639: Global b) Vertical resolution: 60L c) Horizontal resolution: (0.28125°*0.28125°) d) Time integration: Semi-Lagrangian e) Physical processes: Short wave radiation: Fouquart and Bonnel, 1980 Long wave radiation: Morcrette, 1990 Turbulence diffusion: Louis et al., 1979 cumulus convection: mass flux scheme(tiedtke,1989) cloud physics: prognostic cloud scheme (Tiedtke;1993) Surface physical processes:Viterbo and Beljaar, 1995 f) Perturbation method BGM g) Vortex initialization process Relocation and intensity modification h) Ensemble size: 15 members 	120h at 6-h intervals

APPENDIX 3-B, p.3

Item	Method	Type of output
Name of the method	GRAPES Typhoon Model(GRAPES-TYM, Beijing)	4 times/day (00,06,12,18UTC)
Description of the method	a) Forecast domain of GRAPES_TYM: 0~51°N,90~170°E b) Vertical resolution: 50L c) Horizontal resolution: 0.12° d) Time integration: Semi-implicit and Semi-Lagrangian e) Physical processes: RRTM longwave radiation Dudhia shortwave radiation WSM 6-class graupel microphysics Simplified Arakawa-Schubert cumulus convection Monin-Obukhov surface-layer scheme SLAB/thermal diffusion surface physics YSU PBL	Track position up to 120h at 3-h intervals

APPENDIX 3-B, p.4

Name of the method Tropical regional atmosphere model for the South China Sea (TRAMS, Guangzhou) 4 times/day (00,06,12,18UTC) Description of the method Data assimilation:	Item	Method	Type of output
Description of methodData assimilation: (objective analysis) 3DVAR Dynamics: (basic equations) non-hydrostaticTrack position up to 168h at 6-h intervalsDynamics: (domain) Southeast Asia region (vertical levels) 55 levels and 35km topTerrain following height coordinates systemIf (domain) Southeast Asia region (vertical levels) 55 levels and 35km topPhysics: (surface flux and boundary layer) SLAB land surface Scheme (Grell et al., 1995) MRF PBL scheme (Hong and Pan, 1996) (cumulus convection) Simplified Arakawa-Schubert (SAS) convection scheme (Pan and Wu, 1995) (microphysics) WRF single-moment 6-class (WSM6) scheme (Hong and Chen, 2003) (radiation) SWRAD shortwave radiation scheme and RRTM longwave radiation schemeInitial conditions: Analysis from GRAPES 3DVARBoundary conditions: specified from GFS (0.5') with the previous time	Name of the method	Tropical regional atmosphere model for the South China Sea (TRAMS, Guangzhou)	4 times/day (00,06,12,18UTC)
	Description of the method	Data assimilation: (objective analysis) 3DVAR Dynamics: (basic equations) non-hydrostatic (vertical coordinates) Terrain following height coordinates system (domain) Southeast Asia region (vertical levels) 55 levels and 35km top Physics: (surface flux and boundary layer) SLAB land surface Scheme (Grell et al, 1995) MRF PBL scheme (Hong and Pan, 1996) (cumulus convection) Simplified Arakawa-Schubert (SAS) convection scheme (Pan and Wu,1995) (microphysics) WRF single-moment 6-class (WSM6) scheme (Hong and Chen, 2003) (radiation) SWRAD shortwave radiation scheme and RRTM longwave radiation scheme Initial conditions: Analysis from GRAPES 3DVAR Boundary conditions: specified from GFS (0.5) with the previous time	Track position up to 168h at 6-h intervals

Item	Method	Type of output
Name of the method	Shanghai GRAPES Typhoon Model (SGTM)	Track position up to 72h, interval is 6h
Description of the method	 g) Forecast domain of SGTM: West Pacific Ocean and South China Sea h) Vertical resolution: 31L i) Horizontal resolution: 0.25 ° j) Time integration: Semi-implicit, Semi-Lagrangian k) Physical processes: Short wave radiation: Goddard (Chou et. al. 1998) Long wave radiation: RRTM(Mlawer et. al. 1997) Turbulence diffusion: YSU (Hong et. al. 2006) cumulus convection: KF(Kain and Fritsch, 1993) wsm5 microphysics scheme (Hong et. al. 2004) Surface physical processes: 5 level slab model (Blackadar, 1978) 	

Item	Method	Type of output
Name of the method	The Typhoon Track Ensemble Correction (TYTEC)	00 to 120h TC track forecast at 3-h or
Description of the method	A weighted position of the tropical cyclone track forecast based on the global ensemble models of European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP).	6-h intervals
	The basic idea of TYTEC is that the mean of some selected "good" members has better performance than the mean of all members.	
	Frequency of forecast: 4 or 8 times a day.	

Name of the Member Hong Kong, China

Item	Method	Type of output
Name of the method	The Multi-Model Ensemble Technique	
Description of the method	An unweighted position and motion vector consensus of the tropical cyclone forecast tracks given by the global models of the UKMO (EGRR), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF).	24, 48, and 72, 96 and 120-hr forecast positions
	Frequency of forecast: 2 times a day References: [1] James S. Goerss, 2000: Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models, Monthly Weather Review, Vol. 128, p.1187-1193	
	 [2] Russell L. Elsberry, James R. Hughes, and Mark A. Boothe, 2008: Weighted Position and Motion Vector Consensus of Tropical Cyclone Track Prediction in the Western North Pacific, Monthly Weather Review, Vol. 136, p.2478-2487. [3] Y.T. Tam, W.K. Wong and M.Y. Chan, 2015: Error Characteristics of Numerical Weather Prediction Model Ensemble in Tropical Cyclone Track Prediction. [http://www.weather.gov.hk/publica/reprint/r1167.pdf] 	

Annex 1-12

APPENDIX 3-C, ANNEX 4

OPERATIONAL PROCEDURES OF TC SATELLITE ANALYSIS AT HONG KONG OBSERVATORY

1. INTRODUCTION

The Hong Kong Observatory (HKO) has long been using manual Dvorak analysis (1984) on satellite imagery for operational estimation of the intensity of tropical cyclones (TCs). Once a potential TC is suspected to soon form, a Dvorak analysis will be performed as often as deemed appropriate for assessing the current intensity of the TC. For TCs within 0-36 N, 100-140 E, Dvorak analysis will be performed at least for 00, 06, 12 and 18 UTC imageries. For TCs within the HKO area of responsibility (viz. 10-30 N, 105-125 E), additional analysis will be performed for 03, 09, 15 and 21 UTC imageries. Operational position and intensity are provided in Hong Kong Tropical Cyclone Warning for Shipping and local tropical cyclone warnings for the public.

A post-season reanalysis of storms is carried out and the information is incorporated into the TC best track dataset. HKO's best track records started as early as 1884, but more complete records were kept since 1961. HKO produces best tracks for TCs within 0-45 N, 100-160 E until 1960 and 0-45 N, 100-180 E from 1961 onward. The maximum 10-minute surface mean wind and the minimum pressure of TCs are given in the best track dataset at 6-hourly intervals.

2. LOCAL VARIATIONS TO DVORAK (1984)

The Enhanced IR Dvorak technique has been in use operationally in HKO since early 1980s. Prior to that, the Dvorak analysis was initially carried out using the visible imageries. For reporting and warning purposes, a conversion factor of 0.9 was adopted in Hong Kong to convert 1-minute mean winds from the Dvorak wind table into 10-minute mean winds.

While there is no formal reference in the Dvorak technique about its application to TCs making landfall, Dvorak analysis is being applied in Hong Kong to TCs over the sea as well as over land. Beginning the TC season of 2014, a modified version of the original scheme by Dvorak for the weakening stage of TCs is followed (Shum and Chan, 2013). The original scheme only gives direction on handling CI-number when the TC weakens but no explicit guidance is given when the TC stops weakening and the final T-number has flattened for some period of time. In the modified scheme, when the final T-number has already plateaued for more than 12 hours, CI is held the same as the final T-number. For weakening TCs over land, there is no need to hold CI constant for 12 hours. Instead, it is immediately held 0.5 higher than the final T-number.

According to Dvorak (1984), the eye adjustment factor is determined using the eye temperature and the coldest surrounding ring temperature that meets the "narrowest width" requirement. This "narrowest width" requirement has been relaxed in 2014 following Dvorak (1995), i.e. the surrounding ring temperature is defined as any cold band surrounding the eye, regardless of width.

Currently, no Dvorak analysis will be performed after a TC has transitioned into an extratropical low. Extratropical systems are not included in the HKO best tracks.

3. UNIFORMITY IN APPLICATION OF DVORAK TECHNIQUE

The HKO forecasters will carry out Dvorak analysis and fill in the tropical cyclone analysis worksheet as described in the appendix of Dvorak (1984) during operation but the information such as the current intensity (CI) or T-numbers are not being reported outside of HKO and digitized SAREP reports in BUFR format, including information such as CI and the final T-number, are issued eight times a day to other meteorological centres when a TC enters within the HKO area of responsibility..

According to Step 9 in Dvorak (1984) Prior to the introduction of the modified weakening rules described in the preceding section, the CI is to of a TC would be held constant for 12 hours during the initial weakening of a TC-according to Dvorak (1984). Normally, the HKO forecasters followed

this weakening rule even when the TC hasd made landfall or iswas crossing large landmasses such as the Philippines. However, the forecasters may could ignore thise rule for landfalling TCs on a case-by-case basis and discussion is being made in HKO about whether to allow the final T-number to decrease once the centre of the TC hits land.

4. CHANGES IN PROCEDURES OVER TIME

There has been little change to the procedures over the years. Following Harper et al. (2010), a conversion factor of 0.93 was adopted in Hong Kong from February 2013 to convert 1-minute mean winds from the Dvorak wind table into 10-minute mean winds for reporting and warning purposes. Prior to that, a fixed conversion factor of 0.9 had been used.

5. DETERMINATION OF TC FINAL INTENSITY

In determining the final intensity of a TC, surface wind and pressure reports are regarded as ground truth but the quality of the observations are also taken into account (for example, pressure reported by can sometimes be suspicious). For TCs over the where ships ocean such observations are sparse, Dvorak analysis is used as the main tool for TC intensity determination. Other satellite intensity estimates, e.g. wind scatterometer, ADT, etc., are used as references.

Tropical cyclone's central pressure is estimated based on the surface pressure reported by land stations and ships, reconnaissance aircraft reports when available and Dvorak analysis via the wind-pressure conversion table.

The maximum surface mean wind speed is estimated based on the surface winds reported by land stations and ships, Doppler wind observations from radars, reconnaissance aircraft reports when available and Dvorak analysis. Estimates from wind scatterometer data, ADT, SATCON and the Multi-platform Tropical Cyclone Surface Wind Analysis by NOAA are also referenced.

6. INFLUENCES OF TECHNOLOGICAL ADVANCEMENTS ON DVORAK ANALYSIS

One notable influence is due to the advent of microwave imageries in recent years. Microwave imageries are less frequently available, but can serve as a supplement to Dvorak analysis. They enable the forecasters to see through clouds and view rainbands and eye of the TCs even when obscured by upper-level clouds, thereby helping to reveal the best pattern (e.g. banding versus shear or an eye pattern under a central cold cover) to use in the Dvorak classification. In addition, sea-level winds measured by QuikScat and ASCAT or previously QuikSCAT serve as a check on the location and strength of TCs.

7. ANCILLARY DATA CONSIDERED IN PRODUCING FINAL SATELLITE INTENSITY ESTIMATE

Since 2009, HKO has incorporated the "Advanced Dvorak Technique (ADT)" developed by the University of Wisconsin-Madison / Cooperative Institute for Meteorological Satellite Studies (CIMSS) as an objective reference tool for weather forecasters. ADT makes use of computerbased algorithms to objectively identify cloud pattern types, calculate the eye/convective cloud temperatures, apply selection rules, and derive intensity estimate for TC. One advantage of this tool is that it can be fully automated. The ADT is presently applied to the TC positions determined by the forecasters.

Scatterometer winds such as ASCAT or previously-QuikSeat QuikSCAT, NOAA Multiplatform satellite surface wind analysis, images from microwave sensors available in the NRL website (http://www.nrlmry.navy.mil/TC.html), other resources from the web such as satellite-derived winds and dropwindsonde observations are also referenced by HKO forecasters.

8. PRESSURE WIND RELATIONSHIP IN USE

The empirical relationship between CI, the minimum sea level pressure (MSLP) for the

Western North Pacific Basin and the 1-minute maximum mean wind speed (MWS) given in Dvorak (1984) is in operational use at HKO. A conversion factor of 0.9 is applied to convert the 1-minute mean winds to 10-minute mean winds. There have not been any changes regarding the above over the years, but HKO is currently considering adopting the new conversion factor of 0.93 as proposed in WMO/TD-No. 1555.

CI Number	MWS(10-minute	MSLP				
	mean in knots)	(nPa)				
1.0	23					
1.5	23					
2.0	27 28	1000				
2.5	31 33	997				
3.0	4142	991				
3.5	4 9 51	984				
4.0	59 60	976				
4.5	69 72	966				
5.0	81 84	954				
5.5	92 95	941				
6.0	103 107	927				
6.5	114 118	914				
7.0	126 130	898				
7.5	139 144	879				
8.0	153158	858				

Conversion of the Dvorak CI number to MSLP and MWS

9. SYSTEMS TO ENTER THE BEST TRACK RECORDS

Best tracking has been carried out by HKO officers who have rich experience in TC operation. The best tracks are determined independently from the operational environment. An advantage of best tracks over operational tracks is that the analyst can look back and forth to ensure a more reasonable and consistent track. References are also made to additional information such as tropical cyclone passage reports and best track data issued by RSMC Tokyo, which are not available operationally. Currently, there is no periodic re-visit of the best track record from previous years - this is only done on an ad-hoc and need-only basis.

The best track intensity will not normally differ too much from the warning intensity. Strong evidence is required for large changes in intensity.

REFERENCES

Dvorak, V.F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. 11, 45 pp.

Dvorak, V.F., 1995: Tropical clouds and cloud systems observed in satellite imagery: Tropical cyclones. Workbook Vol. 2, 359 pp.

Harper, B.A., J.D. Kepert and J.D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization, WMO/TD-No. 1555.

Shum, C.T., S.T. Chan, 2013: Application of Dvorak Technique during the weakening stage of tropical cyclones. Tropical Cyclone Research and Review, 2013, 2(4), 207-221.

Outline of HKO – Non-Hydrostatic Model (NHM)

Name of the method:

Non-Hydrostatic Model (NHM)

Description of the method:

HKO operates the NHM system based on JMA-NHM (Saito *et al.* 2006) with horizontal resolution at 10-km and 2-km to provide forecasts up to 72 hours and 15 hours ahead respectively (Wong 2010).

In NHM, a 3-dimensional variational data assimilation (3DVAR) system is used to generate the initial condition on model levels using the following meteorological observations:

(A)	GTS							
. ,	SYNOP, SHIP and BUOY	synoptic stations, ship and buoy data						
	TEMP and PILOT	radiosonde and pilot data						
	AMDAR and AIREP	aircraft data						
	AMV	atmospheric motion vectors from MTSAT-2						
	ATOVS	retrieved temperature profiles from NOAA						
	ASCAT Ocean surface	retrieved surface wind over ocean surface						
	wind	scatterometer wind retrieval data from ASCAT,						
		RAPID-SCAT and HY2A						
	Dropsonde	tropical cyclone wind observations from DOTSTAR						
	IASI	temperature and humidity retrieval profile data from						
		EUMETSAT Metop IASI (Infrared Atmospheric						
		Sounding Interferometer)						

(B) Internet

Retrieved total precipitable water over ocean surface from SSM/I and AMSR-E-

- (CB) <u>Regional data exchange</u> Data from automatic weather stations over the south China coastal areas
- (DC) Local data

(i) Tropical cyclone bogus data from forecasters' analysis during TC situations
(ii-i) Automatic weather station data
(ii-ii) Wind profiler data
(iv-iii) Doppler weather radar data
(v-iv) Radar retrieved wind data (u and v) on 1-5 km levels based on multiple weather radars in Hong Kong and the Pearl River Delta region, China
(vi-v) GPS total precipitable water vapour

The 3DVAR analysis for 10-km NHM is produced eight times a day at 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Hourly analysis is performed for the 2-km NHM.

Basic equations	Fully compressible non-hydrostatic governing equations
Vertical coordinates	Terrain following height coordinates system
Forecast parameters	wind (u,v,w), 3-dimensional pressure, potential temperature, specific humidity of water vapour, cloud water, cloud ice, rain water, hail/graupel and snow
Map projection	Mercator

Specifications of the forecast model are given in the following table:

Number of grid points	10-km NHM: 585x405-841x515, 50 levels								
	2-km NHM: 305x305, 60 levels								
Forecast range	10-km NHM: 72 hours								
	2-km NHM: 15 hours								
Initial condition	Analysis from NHM 3DVAR on model levels								
Boundary condition	For 10-km NHM, 3-hourly interval boundary data including horizontal wind, temperature, relative humidity, geopotential height and surface pressure from ECMWF IFS forecast at horizontal resolution of 0.5-0.125 degree in latitude/longitude and on 25 pressure levels (1000, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10,7,5,3,2 and 1 hPa)								
	For 2-km NHM, hourly interval boundary data provided from 10-km NHM forecasts								
Nesting configuration	One-way nesting								
Topography and land-use	USGS GTOPO30 (30 second data smoothed to 1.5 times of								
	horizontal resolution)								
	USGS Global Land Cover Characterization (GLCC) 30								
	second data								
Dynamics	Non-hydrostatic governing equations solved by time-splitting								
	horizontal-explicit-vertical-implicit (HEVI) scheme using								
	4-order centred finite difference in flux form								
Moisture process	Kain-Fritsch convective parameterization (JMA-NHM version) Three ice bulk microphysics scheme								
Surface process	Flux and bulk coefficients: Beljaars and Holtslag (1991)								
	Stomatal resistance and temporal change of wetness								
	included								
	4-layer soil model to predict ground temperature and surface								
	heat flux.								
Turbulence closure model	Mellor-Yamada-Nakanishi-Niino Level 3 (MYNN-3) (Nakanishi								
and planetary boundary	and Niino, 2004) with partial condensation scheme (PCS) and								
layer process	implicit vertical turbulent solver. Height of PBL calculated								
	from virtual potential temperature profile.								
Radiation	Long wave radiation process follows Kitagawa (2000)								
	Short wave radiation process using Yabu and Kitagawa								
	(2005)								
	Prognostic surface temperature included; Cloud fraction determined from PCS.								

STATIONS BROADCASTING CYCLONE WARNINGS FOR SHIPS ON THE HIGH SEAS

Sta	ation	Call sign of coastal	Area covered					
Member	Station	radio station	Alea coveled					
China	Shanghai	XSG	Bohai Sea, Huanghai Sea, Donghai Sea, Shanghai Port, Taiwan Straits and sea around Taiwan province					
	Tianjin	xsz	North and Central Huanghai Sea and Bohai Sea					
	Guangzhou	XSQ	Taiwan Straits, Bashi Channel, Nanhai Sea and Beibu Wan Gulf					
Hong Kong, China	Hong Kong	Broadcast via NAVTEX on 518 kHz*	Waters inside the boundary line: 30N 105E to 30N 125E to 10N 125E, to 10N 105E, to 30N 105E					
Japan	Hokkaido	JNL	Hokkaido area					
	Shiogama	JNN	Sendai area					
	Yokohama	JGC	Tokyo area					
	Nagoya	JNT	Nagoya area					
	Kobe	JGD	Kobe area					
	Hiroshima	JNE	Hiroshima area					
	Niigata	JNV	Niigata area					
	Maizuru	JNC	Maizuru area					
	Moji	JNR	Fukuoka area					
	Kagoshima	JNJ	Kagoshima area					
	Okinawa	JNB	Okinawa area					
Malaysia	Port Penang	LY 3010	Strait of Malacca*					
	Labuan	OA 3010	South China Sea*					
	Miri	OE 3010	South China Sea*					
Philippines	Manila		"Within 300nm from station Pacific waters inside the boundary line: 25N					
r milphiles	marma	DZR, DZG, DSF, DZD, DZF, DFH, DZO, DZN, DZS	120E to 25N 135E, to 5N 135E, to 5N 115E, to 15N 115E, to 21N 120E, to 20N 120E					
	San Miguel	NPO	North Pacific waters east of 160E; Philippine Sea, Japan Sea, Yellow Sea, East China Sea, South China Sea					
Republic of Korea	Seoul	HLL	East Sea, Yellow Sea, Jeju, Chusan, Nagasaki, and Kagoshima areas					
Thailand	Bangkok	HSA , HSJ	Gulf of Thailand, West coast of Southern Thailand, Strait of Malacca and South China Sea					
U.S.A.	Honolulu, Hawaii	KMV-99	Pacific Ocean					
Viet Nam	Dannang	XVT 1-2	Basco Gulf, Blendong Sea and Gulf of Thailand					
	Halphong	XVG 5, 9	ditto					
	Ho Chi Minh Ville	XVS 1, 3, 8	ditto					
	Nha Trang	XVN 1, 2	ditto					

*Coast station VRX closed on 1 October 2006.

LIST OF ADDRESSES, TELEX/CABLE AND TELEPHONE NUMBERS OF THE TROPICAL CYCLONE WARNING CENTERS IN THE REGION

Centre numbers	Mailing address	Telex/	cable,	Telephone,	fax
China					
National Meteorological Center China Meteorological Adm. (Director: Jiao Meiyan B i Baogui)	No. 46 Zhongguancun Nandajie, Beijing 100081)	Tel.: Cable: Fax: E-mail:	(+86) (1 2894 (+86) (1 bibg@c	0) 5899 5809 0) 6217 2956 ma.gov.cn	
Philippines					
Weather Branch Esperanza O. Cayanan Ph.D. PAGASA (Weather Services Chief : Ellaquim A. Adug) Weather Division, PAGASA	Asia TrustBank Bldg. 1424 Quezon Avenue Quezon City 3008 WFFC Bldg., BIR Road, Diliman, Quezon City 1100	Telex: Tel.: Cable: Fax:	66682 V (+63) (2 66682 V (+63) (2 (24 hou	VXMLA PN 2) 922 1996 VX MLA 2) 922 5287 rs)	
Thailand					
Thai Meteorological Department (Director-General: Mr. Worapat T	4353 Sukhumvit Road Bangkok 10260 Tiewthanom Wanchai Saku	Tel.: Fax.: Idomcha E-mail:	(+66) (2 (+66) (2 ai) wopapa tmd_inte	2) 366 6325 2) 399 4020 .t.t@tmd.go.th, er@tmd.go.th	
Weather Forecast Bureau Thai Meteorological Department	4353 Sukhumvit Road Bangkok 10260 1	Tel.: Fax: Fel&Fax	(+66) (2 (+66) (2 :(+66) (2	!) 398-9830 !) 398-9836 !) 399 40 12-4 01	
(Director: Mr. Prawit Jampanya [Dr. Sugunyanee Yavinchar	ı) E-mail:	jampany sugunya	ya@tmd.go.th, anee@hotmail.co	om
Telecommunications and Informa Technology Bureau Thai Meteorological Department	ation 4353 Sukhumvit Roa Bangkok 10260	d Fax:	Tel.: (+ (+66) (2	-66) (2) 399 4555 2) 398 9861	5
(Director : Gp. Capt. Sarun Dabb	hasuta Mr. Somwhang Lo	dchana: E-mail: Sa	angsu) irun.d@r tmd_inte	nict.mail.go.th, er@tmd.go.th	

Annex 1-16

APPENDIX 5-C, p.1

COLLECTION AND DISTRIBUTION OF INFORMATION RELATED TO TROPICAL CYCLONES

			Receiving station										
Type of Data	He	eading	TD	BJ	BB	HH	MM	SL	NN	KK	IV	PP	MC
									.				
Enhanced	SNCI30	BABJ	BJ	0	BJ	BJ	ID	TD TD	BJ	BB	BB	BB	
surface	SNHK20	VHHH	нн	НН	BJ	0		TD TD	BB	BB	BB	BB	нн
observation	SNJP20	RJID	0		TD	TD TD		ID	BB	BB	BB	BB	
	SNKO20	RKSL	SL	ID	ID	ID		0	BB	BB	BB	BB	
	SNLA20	VLIV	вв	BB	IV				BB	BB	0	BB	
	SNMS20	WMKK	BB	BB	KK	BJ			BB	0	BB	BB	
	SNMU40	VMMC		MC	BJ	BJ		TD	BB	BB	BB	BB	0
	SNPH20	RPMM	MM	TD	TD	TD	0	TD	BB	BB	BB	BB	
	SNTH20	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
	SNVS20	VNNN	BB		NN	BJ			0	BB	BB	BB	
Enhanced		BAB.I	BJ	0	B.I	B.I	тр	тр	B.I	BB	BB	BB	
unner-air		BABI	BI	0	BI	BI			BI	BB	BB	BB	
observation		BAB.I	BJ	0	BJ	BJ	тр	тр	B.I	BB	BB	BB	
00301 Valion		BAB.I	BJ	0	BJ	BJ	тр	тр	B.I	BB	BB	BB	
		BAB.I	BJ	0	B.I	B.I	TD	TD	B.I	BB	BB	BB	
	000100	2,120	20	Ũ	20	20	10	10	20	66	88	22	
	UKCI01	BABJ	BJ	0	BJ	BJ		TD	BJ	BB	BB	BB	
	ULCI01	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI03	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI05	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI07	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI09	BABJ	BJ	0	BJ	BJ		TD	BJ	BB	BB	BB	
	UECI01	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	USHK01	VHHH	нн	нн	BJ	0	TD	TD	BB	BB	BB	BB	HH
	UKHK01	VHHH	нн	нн	BJ	0		TD	BB	BB	BB	BB	HH
	ULHK01	VHHH	нн	НН	BJ	0		TD	BB	BB	BB	BB	HH
	UEHK01	VHHH	нн	нн	BJ	0		TD	BB	BB	BB	BB	нн
	USJP01	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UKJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	ULJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	UEJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
		DKGI	SI	тп	тп	тп	тп	0	DD	DD	DD	DD	
		RKSL	SL				ΤD	0	BB	BB	BB	BB	
		RKSL	SI					0	BB	BB	BB	BB	
		RKSI	SI		тр	тр		0	BB	BB	BB	BB	
	USMS01	WMKK	BB	TD	КК	TD	TD	TD	BB	0	BB	BB	
										-			
	UKMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	ULMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	UEMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	USPH01	RPMM	MM				0		RR		RR	BB	
	UKPH01	КРММ	MM	ID	ID	ID	0	ID	RR		RR	RR	
	ULPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
Continued to	UEPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
the next page	USTH01	VTBB	BB	TD	0	TD	TD	TD	BB	BB	BB	BB	

							Rec	eivina st	ation				
Type of Data	He	eading	TD	BJ	BB	НН	MM	SL	NN	КК	IV	PP	MC
Enhanced			DD	тр	0	TD		тр	DD	חח	חח	חח	
					0								
opper-all					0								
observation							тр						
			DD DD				ID		0				
	0KV501	VINININ	вв	ID	ININ	ID		ID	0	БВ	БВ	DD	
	ULVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	UEVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	URPA10	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA11	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA12	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA14	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPN10	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UZPA13	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UZPN13	KNHC	*		TD	TD		TD	BB	BB	BB	BB	
	UZPN13	KWBC	*	TD	TD	TD		TD	BB	BB	BB	BB	
	UZPN13	PGTW	*	TD	TD	TD		TD	BB	BB	BB	BB	
					-								
Enhanced	SNVB20	VTBB			0				BB	BB	BB	BB	
ship	SNVB20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
observation	SNVD20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVE20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVB21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVD21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVE21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX20	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
	SNVX20	VHHH	нн	нн	BJ	0	TD	TD	BB	BB	BB	BB	нн
	SNVX20	VNNN	BB	TD	NN	TD		TD	0	BB	BB	BB	
Enhanced	SBCI30	BABJ	B.I	0	B.I	TD	TD	TD	B.I	BB	BB	BB	
radar	SCCI30	BAB.I		0	B.I	B.I		. –	BB	BB	BB	BB	
observation	SBCI60	BCG7		0	B.I	20			B.I	BB	BB	BB	
oboorvation	SCCI60	BCGZ	нн	0	B.I				BB	BB	BB	BB	
	SBHK20	VHHH	нн	НН	BJ	0	TD		BB	BB	BB	BB	нн
	ISBC01	\/µ⊔⊔	μυ	பப	μυ	0	тп	тп		DD	DD	DD	
	SDCUI		0	U	1D	1D	1D	0		DB	DD	DB	
	SDKU2U		DD	то	KK			U	00	0	חם	חם	
	SDPH20	RPMM	MM	TD	TD	U		TD	BB	0	BB	BB	
				-	-			-	-		-	_	
	SDTH20	VTBB	BB	TD	O	TD	TO		BB	BB	BB	BB	
	SDVS20	VININÍN	BВ	ID	NN	ID	ID		U	RR	RR	RR	

APPENDIX 5-C, p.3

Type of Data Heading TD BJ BB HH MM SL NN KK IV PP MC Salellite guidance TPPM10 PGUM - TD TD TD BB				Receiving station													
Satellite guidance TPPN10 PGTW TD TD TD TD TD TD BB B	Type of Data	He	ading	TD	BJ	BB	HH	MM	SL	NN	KK	IV	PP	MC			
Satellie TPPN10 PGTW · TD TD BB				*													
guidance TPPN10 PGUA * TD	Satellite	TPPN10	PGTW			TD	TD			BB	BB	BB	BB				
TPPA1 RUTY * TD TD <th< td=""><td>guidance</td><td>TPPN10</td><td>PGUA</td><td>*</td><td></td><td>TD</td><td>TD</td><td></td><td></td><td>BB</td><td>BB</td><td>BB</td><td>BB</td><td></td></th<>	guidance	TPPN10	PGUA	*		TD	TD			BB	BB	BB	BB				
TIPPA1 RODN · TD TD <t< td=""><td></td><td>TPPA1</td><td>RJTY</td><td>*</td><td>TD</td><td>TD</td><td>TD</td><td>TD</td><td></td><td>BB</td><td>BB</td><td>BB</td><td>BB</td><td></td></t<>		TPPA1	RJTY	*	TD	TD	TD	TD		BB	BB	BB	BB				
IUCC10 R/ITD O TD TD TD TD TD BB <		TPPA1	RODN	*	TD	TD	TD	TD		BB	BB	BB	BB				
IUCC10 VHHH HH HH HH HH HH O IUCC22 VHHH HH HH HH HH O BB FM HH HH BH BD O TD		IUCC10	RJTD	0	TD	TD	TD	TD	TD		BB	BB	BB				
IUCC02 VHHH HH HH HH HH O Tropical Cyclone FXPQ01 VHHH HH HH HH HH O Forecast FXPQ02 VHHH HH HH BB		IUCC10	VHHH	нн	HH	HH	0										
IUCC03 VHHH HH HH HH HH HH O Tropical Cyclone FXPQ01 VHHH HH HH HH HH O BB HH FXPQ20 VHHH HH HH BJ O TD TD TD BB BB BB BB HH HH HH BJ O TD <		IUCC02	VHHH	НН	HH	HH	0										
IDCC04 VHH HH HH HH O Tropical Cyclone FXPQ01 VHHH HH HH BJ O BB B		IUCC03	VHHH	нн	HH	HH	0										
Tropical Cyclone FXPQ01 VHHH HH HH HH BJ O BB BB </td <td></td> <td>IUCC04</td> <td>VHHH</td> <td>НН</td> <td>HH</td> <td>HH</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		IUCC04	VHHH	НН	HH	HH	0										
Indpical FXPQ02 VHHH HH HH BJ O BB BB <td>Tranical</td> <td></td> <td></td> <td></td> <td></td> <td>БТ</td> <td>0</td> <td></td> <td></td> <td></td> <td>00</td> <td></td> <td></td> <td></td>	Tranical					БТ	0				00						
Cyclonie FXPQ02 VHHH HH HH BJ O BB	Tropical	FXPQ01	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	нн			
PAPC03 VHHH HH HH BJ O TD BB BB <t< td=""><td>Cyclone</td><td></td><td></td><td></td><td></td><td>BJ</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Cyclone					BJ	0										
FXPQ21 VIHH FXPQ2 Inh <	Forecast	FXPQ03	VННН	нн	нн	BJ	0	тр	тр	BB	BB	BB	BB	нн			
FXPQ20 RITD O TD TD TD TD TD TD TD TD BB BB <t< td=""><td></td><td></td><td>VННН</td><td>нн</td><td>нн</td><td>BJ</td><td>0</td><td>ID</td><td>ID</td><td>вв</td><td>вв</td><td>вв</td><td>BB</td><td>нн</td></t<>			VННН	нн	нн	BJ	0	ID	ID	вв	вв	вв	BB	нн			
FXPQ20 RJID O ID ID ID ID ID ID ID BB BB BB BB BB FXPQ21 RJTD O TD TD TD TD TD TD TD BB		FXPQ21		нн		тр		TD	тр	00	00	00	00				
FXPQ21 RJTD O TD TD <t< td=""><td></td><td>FXPQ20</td><td>RJID</td><td>0</td><td>ID</td><td>ID</td><td>ID</td><td>ID</td><td>ID</td><td>BB</td><td>BB</td><td>вв</td><td>BB</td><td></td></t<>		FXPQ20	RJID	0	ID	ID	ID	ID	ID	BB	BB	вв	BB				
FXRQ22 RUTD O TD TD <t< td=""><td></td><td>EXPO21</td><td>RITD</td><td>0</td><td>тп</td><td>тп</td><td>тп</td><td>тп</td><td>тп</td><td>BB</td><td>BB</td><td>BB</td><td>BB</td><td></td></t<>		EXPO21	RITD	0	тп	тп	тп	тп	тп	BB	BB	BB	BB				
IFAR22 RUTD O TD TD <t< td=""><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>BB</td><td>BB</td><td>BB</td><td>BB</td><td></td></t<>				0						BB	BB	BB	BB				
NAME RUTD O TD		EXPO23	RITD	0						BB	BB	BB	BB				
Warning WDPN31 PGTW * TD TD TD TD TD TD TD BB				0						BB	BB	BB	BB				
Warning WDRN31 PGTW * TD TD TD TD D DD DD DD		EXPO25	RITD	0						BB	BB	BB	BB				
FXPQ29 VTBB FXPH20 NMM TD TD TD TD O TD BB			Rold	Ŭ	ΠD	ΪD	1D	1D	10	00	00	66	00				
FXPH20 RPMM MM TD TD TD TD O TD BB BB <t< td=""><td></td><td>FXPQ29</td><td>VTBB</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		FXPQ29	VTBB			0											
FXSS01 VHHH HH HH HH BJ O BB BB <t< td=""><td></td><td>FXPH20</td><td>RPMM</td><td>ММ</td><td>TD</td><td>TD</td><td>TD</td><td>0</td><td>TD</td><td>BB</td><td>BB</td><td>BB</td><td>BB</td><td></td></t<>		FXPH20	RPMM	ММ	TD	TD	TD	0	TD	BB	BB	BB	BB				
FXSS02VHHH FXSS03HH HH HHHH HH HHBJ BJOBB DBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB 		FXSS01	VHHH	НН	НН	BJ	0	-		BB	BB	BB	BB	нн			
FXSS03 VHHH HH HH HH BJ O BB BB <t< td=""><td></td><td>FXSS02</td><td>VHHH</td><td>нн</td><td>нн</td><td>BJ</td><td>0</td><td></td><td></td><td>BB</td><td>BB</td><td>BB</td><td>BB</td><td>нн</td></t<>		FXSS02	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	нн			
FXSS20 VHHH HH HH HH BJ O TD TD BB		FXSS03	VHHH	НН	HH	BJ	0			BB	BB	BB	BB	HH			
FXSS20 VHHH FXSS21 HH HH HH HH BJ O TD TD BB																	
FXSS21 VHHH HH HH HH O Warning WDPN31 PGTW * TD TD TD TD TD BB CO TD		FXSS20	VHHH	нн	нн	BJ	0	TD	TD	BB	BB	BB	BB	нн			
Warning WDPN31 PGTW * TD BB		FXSS21	VHHH	HH	HH		0										
Warning WDPN31 PGTW * TD																	
WDPN32 PGTW * TD TD TD TD TD TD TD BB	Warning	WDPN31	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB				
WHC128 BCGZ BJ BJ BJ BJ BJ BJ BJ BB		WDPN32	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB				
WHCI40 WSPHBABJ RPMMBJOBJBJBJBJBJBJBJBJBJBJBJBJBJBJBBBBBBBBBBBBWTMU40VMMCBJMCBJBJTDTDTDDTDBBBBBBBBBBBBBBCWTPN21PGTW*TDTDTDTDTDTDBBHHHHHHHHBJOTDTDTDTDBBBBBBBBHHHHHHHHBJOTDTDTDBBBBBBBBHHHHHHBJOTDTDTDTDBBBBBBBBHHHHHHBJOTDTDTDTDTDTDTDTDTDTDTDTDTDTD </td <td></td> <td>WHCI28</td> <td>BCGZ</td> <td></td> <td></td> <td>BJ</td> <td>BJ</td> <td></td> <td></td> <td>BJ</td> <td>BB</td> <td>BB</td> <td>BB</td> <td></td>		WHCI28	BCGZ			BJ	BJ			BJ	BB	BB	BB				
WSPHRPMM*TDTDTDTDOTDBBBBBBBBBBBBWTMU40VMMCBJMCBJBJTDTDTDBBBBBBBBBBBBOWTPN21PGTW*TDTDTDTDTDTDBBBBBBBBBBBBBBWTPN31PGTW*TDTDTDTDTDBBBBBBBBBBBBWTPN32PGTW*TDTDTDTDTDBBBBBBBBBBBBWTPH20RPMMMMTDTDTDTDTDBBBBBBBBBBBBWTPQ20VHHHHHHHBJOTDTDBBBBBBBBBBHHWTS20VNNNBBTDOTDTDTDTDBBBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBBB <tr< td=""><td></td><td>WHCI40</td><td>BABJ</td><td>BJ</td><td>0</td><td>BJ</td><td>BJ</td><td></td><td></td><td>BJ</td><td>BB</td><td>BB</td><td>BB</td><td></td></tr<>		WHCI40	BABJ	BJ	0	BJ	BJ			BJ	BB	BB	BB				
WTMU40VMMCBJMCBJBJTDTDTDTDBB		WSPH	RPMM	*	TD	TD	TD	0	TD	BB	BB	BB	BB				
WIM040 VMMC BJ MC BJ BJ BJ BB							.							•			
WTPN21PGTW*TDTDTDTDTDTDBBBBBBBBBBWTPN31PGTW*TDTDTDTDTDBBBBBBBBBBWTPN32PGTW*TDTDTDTDTDBBBBBBBBBBWTPH20RPMMMMTDTDTDTDOBBBBBBBBWTP420VHHHHHHHBJOTDBBBBBBBBBBWTPQ20VHHHHHHHBJOTDBBBBBBBBHHWTS20VHNNHHHHBJOTDBBBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBBBB		WTMU40	VMMC	BJ	MC	BJ	BJ			BB	BB	BB	BB	0			
WTPN31PGTW*TDTDTDTDTDTDBBBBBBBBBBWTPN32PGTW*TDTDTDTDTDTDBBBBBBBBBBWTPH20RPMMMMTDTDTDTDOBBBBBBBBBBWTPH21RPMMHHHHBJOTDBBBBBBBBBBHHWTPQ20VHHHHHHHBJOTDBBBBBBBBHHWTSS20VHHHHHHHBJOTDBBBBBBBBBBWTTVS20VNNNNNBJOBBBBBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBBBB		WTPN21	PGTW		TD TD	TD	TD TD	TD TD	TD TD	BB	BB	BB	BB				
WTPN32PGTW*TDTDTDTDTDTDBBBBBBBBBBWTPH20RPMMMMTDTDTDTDOBBBBBBBBWTPH21RPMMMMTDTDTDOBBBBBBBBBBWTPQ20VHHHHHHHBJOTDBBBBBBBBBBHHWTSS20VHHHHHHHBJOTDBBBBBBBBBBHHWTTH20VTBBBBTDOTDDBBBBBBBBBBWTVS20VNNNBNNBJOBBBBBBBBBBWTPQ20RJTDOTDTDTDTDBBBBBBBBBBWTPQ21RJTDOTDTDTDTDTDBBBBBBBB		WTPN31	PGTW		TD	TD	TD TD	TD TD	TD	BB	BB	BB	BB				
WTPH20RPMMMMIDIDIDIDIDOBBBBBBBBWTPH21RPMMTDTDOOBBBBBBBBBBWTPQ20VHHHHHHHBJOTDBBBBBBBBBBHHWTSS20VHHHHHHHBJOTDBBBBBBBBHHWTTH20VTBBBBTDOTDBBBBBBBBBBWTVS20VNNNBBTDOTDTDTDBBBBBBBBWTPQ20RJTDOTDTDTDTDTDBBBBBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBBBBBB		WTPN32	PGIW		TD TD	TD	TD TD	ID	ID	BB	BB	BB	BB				
WTPH21RPMM WTPQ20HH VHHH 		WTPH20	RPMM	MM	ID	ID	ID	0		BB		BB	BB				
WT PQ20VHHHHHHHBJOTDBBBBBBBBHHWTSS20VHHHHHHHBJOTDBBBBBBBBHHWTTH20VTBBBBTDOTDBBBBBBBBHHWTVS20VNNNNNBJOBBBBBBBBWTPQ20RJTDOTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDTDBBBBBBBB						ТП		0		BD		ВD	ВD				
WTFQ20VHHHHHHHBJOIDBBBBBBBBHHWTSS20VHHHHHHHBJODBBBBBBHHWTTH20VTBBBBTDOTDBBBBBBBBBBWTVS20VNNNNNBJOBBBBBBBBWTPQ20RJTDOTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBBBB				μи	ЦЦ	ים ים	\circ	0	тр		pD			μц			
WTSS20VHHHHHHHHHBJOBBBBBBBBBBBBHHWTTH20VTBBBBBBTDOTDBBBBBBBBBBWTVS20VNNNNNBJOBBBBBBBBBBWTPQ20RJTDOTDTDTDTDBBBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBBBB		WTEE20				DJ	0		ID								
WTTH20VTBBBBIDOIDBBBBBBBBWTVS20VNNNNNBJOBBBBBBWTPQ20RJTDOTDTDTDTDBBBBBBWTPQ21RJTDOTDTDTDTDTDBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBB		WTTU20				БJ				DD DD	DD DD			пп			
WTV320VNNNNNBJOBBBBBBWTPQ20RJTDOTDTDTDTDBBBBBBWTPQ21RJTDOTDTDTDTDBBBBBB		WTV920		DD	ID												
WTPQ20 RJTD O TD TD TD TD TD BB BB BB WTPQ21 RJTD O TD TD TD TD TD BB BB BB BB		VV I V 320	VININÍN			ININ	55			0	00	00	00				
WTPQ21 RJTD O TD TD TD TD BB BB BB BB		WTPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB				
		WTPO21	RJTD	0	ТП	TD	TD	TD	TD	BR	BR	BB	BR				
WTPQ22 RJTD O TO TO TO TO BR BR BR BR		WTPO22	RJTD	0	TD	TD	TD	TD	TD	BB	BR	BR	BR				
Continued to WTPQ23 RJTD O TD TD TD TD TD BB BB BB BB	Continued to	WTPO23	RJTD	0	TD	TD	TD	TD	TD	BR	BR	BR	BR				
the next page WTPQ24 RJTD O TD TD TD TD TD BB BB BB BB	the next name	WTPQ24	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB				

							Rece	eiving st	ation				
Type of Data	He	Heading		BJ	BB	HH	MM	SL	NN	KK	IV	PP	MC
Warning	WTPQ25	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTKO20	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
Prognostic	WTPQ30	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Reasoning	WTPQ31	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ32	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ33	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ34	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ35	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Five dev		חדו ח	0	тр	тп	тп	тп	тр	DD	DD	DD	DD	
Five-uay	WIFQ50	RJID	0										
track	WTPQ51	RJID	0						BB	BB	BB	BB	
forecast	WTPQ52	RJID	0	ID	ID	ID	ID	ID	BB	BB	BB	BB	
	WTPQ53	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ54	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ55	RJTD	ο	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Others													
Best track	AXPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	

20°S ~ 60°N

LIST OF DATA ARCHIVED BY RSMC TOKYO - TYPHOON CENTER

(a) Level II-b

Kinds of data:	Surface, ship, buoy, upper-air, RADOB, aircraft, ASDAR,
	advisory warning, SAREP, SATEM, SATOB,
	TBB grid value and cloud amount (GMS);

Area coverage:	SATEM	: 90°E ~ 180°E and 0° ~ 45°N
	SATOB, TBB grid value and cloud amount	e :area covered by MTSAT
	Other data	: within the area of 80°E ~ 160°W and

(b) MTSAT Himawari imagery data

High Rate Information Transmission (HRIT) Data Himawari Standard Data (HSD):

- Kind of data: MTSAT high resolution digital Himawari full-spec imagery data
- Data format: "JMA HRIT Mission Specification Implementation", Issue 1.2, 1 Jan. 2003-Himawari Standard Format (http://www.jma.go.jp/jma/jma-eng/satellite/mtsat1r/4.2HRIT_1.pdf_ http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_s ample/HS_D_users_guide_en_v12.pdf)
- Resolution: 1 km (VIS) and 4 km (IR) at the sub-satellite point

Channel and wavelength (micrometers):

	- 0.55 - 0.90
IR1 [.]	103-113
IP2	11.5 - 12.5
	0 5 7 0
IR3.	- 0.5 - 7.0
IR4:	3.5 - 4.0

Brightness level: 10 bits (1,024 gradations)

Meteorological Satellite Center Monthly Report (CD-ROMDVD):

Kinds of data: MTSAT-Himawari images of in SATAID and PNG formats. (http://mscweb.kishou.go.jp/product/library/report/index.htm http://www.data.jma.go.jp/mscweb/en/product/library/report/)

Area coverage:

SATAID: $115^{\circ}E \sim 150^{\circ}E$ and $15^{\circ}N \sim 50^{\circ}N$ PNG: Full earth disk as seen from $140^{\circ}E$

(c) Level III-a

Kinds of data: Grid point data of the objective analysis obtained by the global objective analysis system in RSMC.

Area coverage: Global area covered by 1.25 X 1.25 latitude-longitude grid system. APPENDIX 7-A, p.2

Time of analysis: 00, 06, 12 and 18 UTC

Element and layer:

Surface: Sea surface pressure (Ps), temperature (Ts), dew point depression (Ts - Tds), wind (Us, Vs);

Specific pressure levels (1000 - 10 hPa): Geopotential height (Z), temperature (T), wind (U, V);

Specific pressure levels (1000 - 300 hPa): Dew point depression (T-Td).